

Dimensional Informatics

Tim Brailsford

The problem with data

A Relational Data Base MENU ph Data System Quit AUTHOR au_id au_lname au_fname address city state Window Status Page Hide 10932 Bigge Rd. Menilo Park CA 172-32-1176 white. Johnson 213-46-8915 Green 309 63rd St. #411 Oakland Marjorie CA 238-95-7766 Carson 589 Darwin Ln. CA Cherul Berkeley. YEARS SALARY BONUS 22 Cleveland Av. #14 267-41-2394 0'Learu CA Michae1 San Jose 2 40000 10000 274-80-9391 Straight Dean 5420 College Av. Oakland CA S.AL KS 341-22-1782 Smith Meander 10 Mississippi Dr. Lawrence 3 45000 10000 409-56-7008 Bennet Abraham 6223 Bateman St. Berkeley. CA deto 4 75000 25000 427-17-2319 Dull Ann 3410 Blonde St. Palo Alto CA CA 472-27-2349 Gringlesby Burt P0 Box 792 Covelo 65000 25000 3 10 486-29-1786 Locksley Charlene 18 Broadway Av. San Francisco CA Б 20000 65000 TITLE title_id title VESSELS-NUMBER READING-ITEM-NUMBER BU1032 The Busy Executive's Databa VESSELS-SUFFIX READING-SEQUENCE-NUMBE BU1111 Cooking with Computers VESSELS-C-ALLOWANC VESSELS-PRIMEKEY 14 DATE READING-PRIMEKEY You Can Combat Computer Stage-RE LEVEL-J BU2075 VESSELS-ACTIVITYFLAG 00 READING-POINT-CODE READING-LINE VESSELS-PRIMEKEY BU7832 Straight Talk About Compute AGE-LO VESSELS-COATEDFLAG READING-AVERAGE-LOSS READING-RECORD-CONTENT VESSELS-COATINGKEY MC2222 Silicon Valley Gastronomic TYEARS READING-PERIOD-LOSS VESSELS-CRN The Gourmet Microwave DATE MC3021 READING-TOTAL-LOSS The Psychology of Computer ST-REA VESSELS-DESIGNKEY READING-TOTAL-LOSS-PERC MC3026 VESSELS-PRESSUREKEY VESSELS-DRAWING MUM-LC READING-VALUE PC1035 But is it User Friendly? VESSELS-PRESSURESUE INGS-C VESSELS-GROUPNUMBER LEVEL-J PC8888 Secrets of Silicon Valley VESSELS-PRESSURE and the second second VESSELS-SUBGROUPNUMBE LEVEL-K VESSELS-TEMPERATURE PC9999 Net Etiquette VESSELS-GROUPKEY READING-PRIMEKEY VESSELS-PRESSURELIN PS2091 is Anger the Enerny? VESSELS-ID1 VESSELS-PRESSURE-TA VESSELS-ID2 LEVEL-J VESSELS-ITEM1 00 VESSELS-PRIMEKEY VESSELS-ITEM2 PUBLISHER VESSELS-INSPECTIONFREO pub_id pub_name city VESSELS-INSULATEDFLAG 736 New Moon Books Boston VESSELS-INSULATIONKEY VESSELS-THICKNESSKE' Vashir 977 Binnet & Hardleu VESSELS-MANWAYFLAG VESSELS-THICKNESSSUI 1389 Algodata Infosystems Berkel VESSELS-MANUFACTURERK VESSELS-THICKNESS VESSELS-NAMEKEY 1622 Five Lakes Publishing Chicag VESSELS-MATERIALKEY VESSELS-PRODUCTIONUNI1 1756 Ramona Publishers Dallas VESSELS-J-EFFICIENCY VESSELS-REG1 Base and attached tables related by prime key 9901 GGG\$.G Münch VESSELS-DIAMETER VESSELS-REG2 New Yo VESSELS-THICKNESSLIM 9952 Scootney Books on a typical relational database. VESSELS-SCHEDULENO VESSELS-THICKNESS-TA 9999 Lucerne Publishing Paris VESSELS-SRN LEVEL-J

00

VESSELS-PRIMEKEY

VESSELS-STRESSFLAG

472-27-2549 107777

Why is this a problem?

The Null Conundrum

First Name	Middle Name	Last Name
Timothy	John	Brailsford
James	NULL	Goulding

Semi-Structured Data

Dimensional Informatics

- Inspired by Ted Nelson's ZigZag System
- Data is contained in cells
- Cells are arranged in ordered lists ranks in dimensions
- Dimensions usually have semantic meaning
- All cells exist in all dimensions but the ordering can be different

Complex Data

Н					1011 - 1	(4)).	He
Li	Be	В	С	Ν	0	F	Ne
Na	Mg	AI	Si	Р	S	CI	Ar
К	Ca	Ga	Ge	As	Se	Br	Kr

Element	Symbol	Atomic mass	Density	Melting poi
	\mathbf{H}	g/mol	kg/m3	K
Hydrogen	Н	1.01	0.09	14.0
Helium	He	4.00	0.17	1.0
Lithium	Li	6.94	534.00	452.0
Beryllium	Be	9.01	1800.00	1550.0
Boron	В	10.81	2500.00	2600.0
Carbon	C	12.01	2300.00	-3800.0
Nitrogen	Ν	14.01	1.17	-63.3
Oxygen	0	16.00	1.33	-54.7
Fluorine	F	19.00	1.70	-53.5
Neon	Ne	20.18	-0.84	-24.5
Sodium	- Na	22.99	970.00	371.0
Magnesium	Mg	24.31	1741.00	924.0
Aluminium	AI	26.98	2700.00	933.2
Silicon	Si	28.09	2300.00	1680.0

Hyperorders

- James Goulding PhD
- Any cell may be associated with any other in any dimension
- In set theory:

 $HM_{hyperorder} = \langle C, \{ D_1, D_2, ..., D_n \} \rangle$ where $D_i \subset C_2$

You then don't need a separate linking mechanism

Objectives

- CFFRC will have a lot of complex semistructured data
- Develop a dimensional informatics storage layer - based on hyperorders for CFFRC datasets
- Implement this as a layer that can co-exist with conventional structures (i.e. RDMS)
- This should provide associations and inferences that would previously have been difficult or impossible

Supervision Team

- Tim Brailsford (UNMC)
- James Goulding (Horizon, UoN UK)
- Sean Mayes (CFFRC)

Approaches & Methodologies

- Continue the theoretical work
- Develop a DI server and associated query/retrieval language
- Test this with selected CFFRC data sets
- Implement an overlay to integrate the CFFRC knowledgebase with the DI server

Ideal student

- Really good programmer/software engineer
- Good knowledge of database theory
- Not afraid of maths!