

能源及環境學院 SCHOOL OF ENERGY AND ENVIRONMENT

Observational analysis of biomass burning impacts to Hong Kong

Yun Fat LAM, Irene Yeung and Tobi Morakinyo

7-SEAS International Workshop 23 September 2016

Introduction

Biomass burning:

- Forest, grassland, domestic and open burning
- Affect air quality, human health, visibility and global climate
- Global source of aerosol and trace gases
- Significant contribution of VOCs/PM/CO to the atmosphere

Southeast Asia Burning Emissions)

- March and April are referred to the start of spring farming season in SEA peninsula (Pochanart *et al.*, 2001; Gadde *et al.*, 2009)
- Annual profile of biomass burning dry matter (DM) emission in SEA

Peak at spring

Dry season: October to May

(from Global Fire Emission Database)

Hong Kong Situation

1. High pollutant concentrations in the spring

Examples from Tap Mun station:

- O₃: 263 μg/m³
- PM₁₀: 90 μg/m³
- 17 incidents of "high" and 3 incidents of "very high" of Air Quality Health Index (AQHI) in April 2015

Seasonal change of wind pattern (South China Sea)

Summer Monsoon (SW): bring clean maritime air to SCS

Source: http://www.hko.gov.hk/blog/en/archives/00000071.htm

Winter Monsoon (NE): bring industrial pollutants to SCS

: Air pollution episodes mainly take place in winter

Transport Mechanism

Free Troposphere

[1] Vertical Advection

- Fire buoyancy Height of emission plume = 2~5km
- ≻~40% directly injected to the free troposphere (Jian and Fu, 2013)
- Reach the free troposphere

Source: http://patentimages.storage.googleapis.c om/thumbnails/US6809743B2/US06809 743-20041026-D00002.png

Transport Mechanism

Free Troposphere

Transport Mechanism

Free Troposphere

[2] Transport to Higher Latitude

- 1. The southwesterly flow confluence boundary layer coupling with a wellorganized **convergent center** at the Indochina peninsula in March and April
- 2. Encourage an **ascending motion** to form the upward branch at the burning region (Lin *et al.*, 2013; Yen *et al.*, 2013)
- 3. Pollutants were brought up to higher latitude regions V(1979-2010) Mar
 45°N
 700mb
 700mb
 700mb
 15°N
 15°N
 15°N

Transport Mechanism

Free Troposphere

[4] Downdraft to Surface

- Cold surge anticyclone: Southward cold air over northern provoke cold surge
- Cold surge and warm front meets
- Cold air slides under the warm air and bring biomass pollutants aloft to the surface of Hong Kong

Source: http://www.wxkph.info/#!ne-monsoon-andcold-surges/czz9

Study Analysis

Observation analysis/impact study

- Impacts on regional background pollution
- Study on Spring-time biomass burning events
- Impacts on local air quality at South China Seas
- Study period: March May 2012-2015
 - O₃, CO, PM, NO_x, SO₂

Study Domain

Selected Stations

Hong Kong stations

- [1] Tai Mo Shan Station
- ~1km MSL
- Spring-time PBL around 400-650 m, in most time less then 800m
- Well represent the air above the PBL
- Data available until 2015
- Equipment: O₃, CO, PM, NO_x, SO₂

Results discussion

- 1. Background contribution to SCS
- 2. Event identification and its impact
- 3. Impacts of downdraft meteorological condition

[1] Background Contribution

- Identify source region
- Perform HYSPLIT particle dispersion model

 (1) With vertical mixing below 800m
 (2) Without vertical mixing or passing through HK domain
- Identify background enhancement through local monitoring data
 - Pure transport, regardless of SEA emissions

Identify source region

• Six locations are chosen by the Upper 1% of March and April DM sum

Perform HYSPLIT

PARTICLE CROSS-SECTIONS PARTICLE POSITIONS AT 04 UTC 15 Mar 13 < 3000 < 6000 < 9000 <12000 <15000 LAYER (m): 10000 7500 5000 2500 n NUMBER OF PARTICLES ON GRID: 9996

Height AGL (m)

NOAA HYSPLIT MODEL

Year	Month	SEA emission arrival (%)
2012	March	45%
2012	April	50%
2013	March	45%
2013	April	30%
2014	March	39%
2014	April	70%

Background Contribution (µg/m³)

 ΔPM_{25} ratio (TMS) ΔPM_{10}

- Represent the characteristics of the combustion sources
- Decreas of $\Delta PM_{2.5} / \Delta PM_{10}$ ratio
- Higher proportions of PM₁₀ aerosols
- Contribution of different foreign sources in vertical mixing cases

Results discussion

- 1. Background contribution to SCS
- 2. Event identification and its impact
- 3. Impacts of downdraft meteorological condition

[2] Episodic event

Case Identification:

- 1. Particle dispersion starting from SEA pass over HK
- 2. Backward trajectory
- 3. HK meteorological conditions for downdraft
- 4. High level of fire emissions recorded at SEA areas

Example for Cases Identification (2013 March W3)

	SEA BB DM emissions (kg/day/m ²)	HK back trajectory	SEA pacticle dispersion	HK Meteor. Condition
	Greater than March and April lower quartile?	From SEA?	Arrice HK <800m?	Vertical mixing?
13/3/13	Y			Y
13/3/14	Y	Y	Y	Y
13/3/15	Y	Y	Y	Y
13/3/16	Y	Y		Y
13/3/17	Y		Y	
13/3/18	Y		Y	

HYSPLIT

- From source
- Kyaukme, Myanmar, Burma (22.625, 96.625)
- Uplifted and transported northeastward
- Reached TW and started to descend to south
- Due to the subsidence as a result of the cold surge anticyclone

Backward Trajectory From HK

Southeast Asia Biomass Burning Emissions Profile

Hong Kong Meteorological Conditions

 Air mass originated from the free atmosphere was transported to the surface (cold, dry and higher speed)

2013年3月部分香港氣象要素的每日記錄

Downdraft

Effects of HK Air Quaity

Further study for other biomass burning emission tracer

Results discussion

- 1. Background contribution to SCS
- 2. Event identification and its impact
- 3. Impacts of downdraft meteorological condition

HK Local Air Pollution Enhancement by Downdraft

Concentration (µg/m3)

	TMS			CWB			ТМ					
	СО	O3	PM2.5	PM10	СО	O3	PM2.5	PM10	CO	O3	PM2.5	PM10
Background contribution	15.4	6.6	1.3	3.0	16.5	-0.1	1.6	3.1	112.6	2.3	4.0	5.6
Episodic event	243.3	21.1	9.5	15.7	28.1	5.3	8.5	19.9	184.3	17.6	11.0	22.5
Downdraft meteorologic al condition	39.7	2.8	0.0	1.3	-39.8	-2.2	4.9	5.8	88.9	0.8	6.3	6.4

Acknowledgement

- Environmental Conservation Funds
- Guy Carpenter Asia-Pacific Climate Impact Centre (GCACIC)
- Hong Kong Environmental Protection Department (Peter Louie)
- National Taiwan University (George Lin; Ming-Tung Chuang)

Thank you !

[3] Impacts of Meteorological Conditions

- Sorting with different groups by Hong Kong meteorological data (wind speed, temperature and humidity)
- (1) With downdraft meteorological conditions
- (2) Without downdraft meteorological conditions