Source apportionment of PM_{2.5} during haze and non-haze episode in Kuala Lumpur

¹Mohd Talib Latif, Norhaniza Amil^{1,2}, Md Firoz Khan³, Yusuke Fujii⁴, Nor Azura Sulong¹, Susumu Tohno⁴

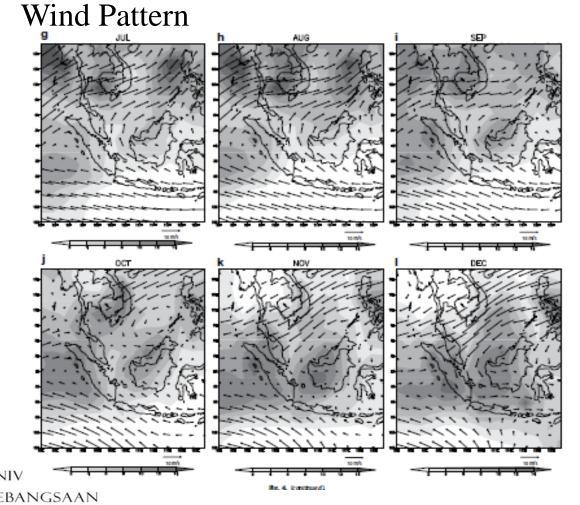
 ¹School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
 ²School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
 ³Institute of Climate Change, Universiti Kebangsaan Malaysia
 ⁴Department of Socio-Environmental Energy Science, Kyoto University, Kyoto, Japan

Presentation Outline

- Introduction
- Main Methodology
- Chemical Massa Closure and Source Apportionment Inorganic Substances (2011-2012)
- Composition of Organic Substances (2011-2012)
- Source apportionment based on organic composition
- Recent study on PM_{2.5} 2015
- Conclusion

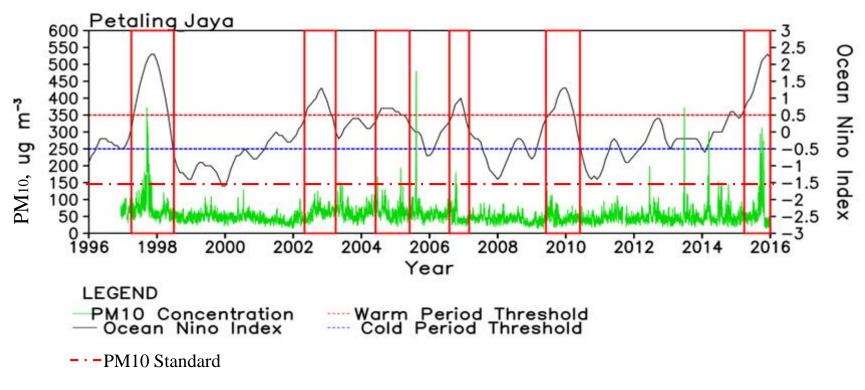
Introduction

- The biomass burning in South East Asia region has been reported since late of 19th century
- Since then several major forest fires in South East Asia have been recorded in 1972, 1987, 1990, 1994, 1997, 2004, 2005, 2012, 2013, 2014 and the latest in 2015.



Trigger to Biomass Burning

 In South East Asia biomass burning has become a traditional method of clearing land in the practice of shifting cultivation, which involves field rotation and the slashing and burning of a new plot of land once the existing plot has lost its fertility



June to September Southwest monsoon

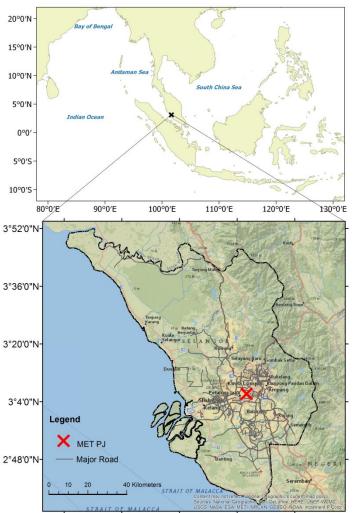
UNIV KEBA MALA The Natio of Malay

KEBANGSAAN MALAYSIA The National University of Malaysia

PM₁₀ Concentration in Petaling Jaya during El-Niño and La-Niña

Research Objectives

- 1. To characterize the **seasonal variability** of the PM_{2.5} mass concentration and particle number concentration (PNC)
- 2. To determines the **chemical compositions** of $PM_{2.5}$ in the urban environment
- To identify the major sources of PM_{2.5} in different seasons using source apportionment analysis – Positive Matrix Factorisation (PMF)



METHODOLOGY

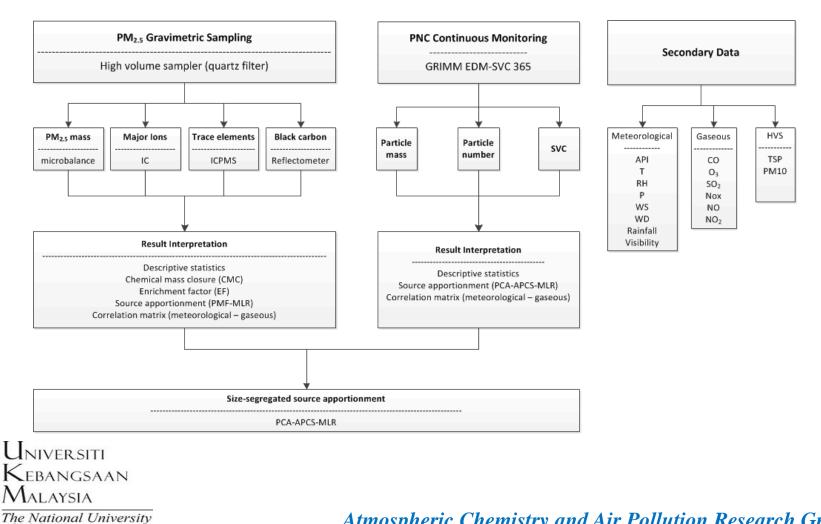
Met Department, PJ 2011-2012 UKM Kuala Lumpur 2015-2016

100°48'0"E 101°4'0"E 101°20'0"E 101°36'0"E 101°52'0"E

Aerosol Continuous Monitoring

- GRIMM EDM-SVC 365
- Flowrate of 1.2 L min⁻¹
- 1-min interval continuously
- 31 size channels : 265 34000 nm
- 2012 Jan 2012 July
- Measuring principle: laser light scattering

UNIVERSITI KEBANGSAAN MALAYSIA The National University MET PJ S&M HVS PM2.5 + GRIMM EDM-SVC 365



PM_{2.5} Gravimetric Sampling

- Tisch HVS PM_{2.5}
- Flowrate of 1.13 m³ min⁻¹
- 24 h sampling/filter
- Quartz filter [Whatman QM-A; 8' X 10']
- 2011 August 2012 July

Inorganic Composition

of Malaysia

Organic Substances

- OC / EC DRI model 2001 OC / EC carbon analyser IMPROVE_A protocol.
- Solvent-extractable organic compounds (SEOC; biomarkers derived from biomass burning sources and n-alkanes) - GC-MS
- Analyses were conducted at Kyoto University

Chemical Mass Closure (CMC)

 $[PM_{2.5}] = [Sea salt] + [Dust] + [SIA] + [TE] + [BC] + [K^+] + [Unidentified]$ (3)

where,[Sea salt] =
$$[Na^+] + [Cl^-] + [Mg^{2+}] + [ss-K^+] + [ss-Ca^{2+}] + [ss-SO_4^{2-}];$$

with $[ss-K^+] = 0.036 \times [Na^+]; [ss-Ca^{2+}] = 0.038 \times [Na^+];$ and
 $[ss-SO_4^{2-}] = 0.252 \times [Na^+]$
[Dust] = $[nss-Ca^{2+}] / 0.11$
[SIA] = $[nss-SO_4^{2-}] + [NO_3^-] + [NH_4^+];$ with $[nss-SO_4^{2-}] = [SO_4^{2-}] - [ss-SO_4^{2-}];$
"nss-" standing for "non-sea salt"

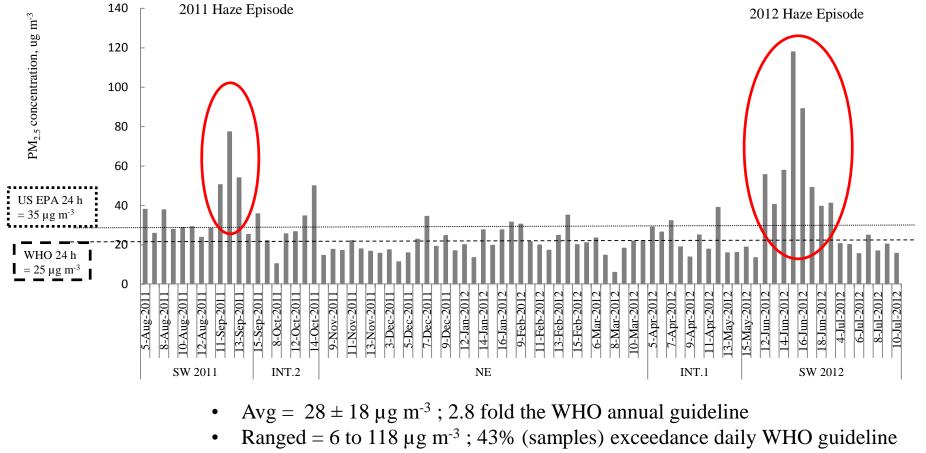
US EPA Model

• US EPA Models, Tools and Databases for Air Research

http://www.epa.gov/air-research/models-tools-and-databases-air-research

• Positive Matrix Factorization Model for environmental data analyses

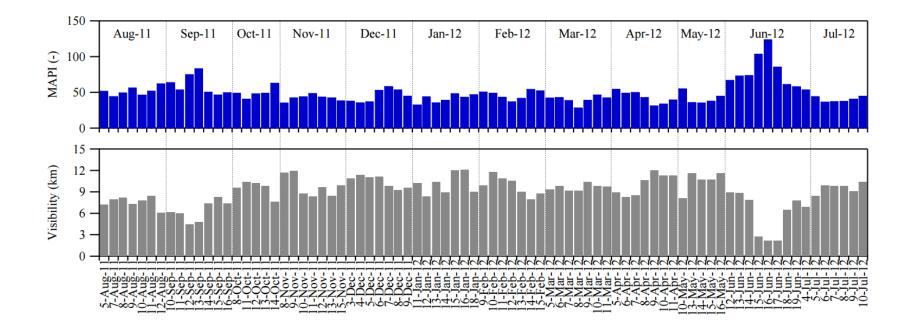
http://www.epa.gov/air-research/positive-matrix-factorization-model-environmentaldata-analyses


• Download PMF 5.0

http://www.epa.gov/sites/production/files/2015-03/epa_pmf_5.0_setup.exe

RESULTS

Kebangsaan


The National University

Malaysia

 $U_{\text{NIVERSITI}}$ • Except NE monsoon, other seasons >50% exceedance WHO & EU standards

Source: Amil et al.(2016)

Malaysian Air Pollutants Index (MAPI) and Visibility

Source: Fujii et al.(2015)

Descriptive statistics of PM_{2.5} mass and particulate matter (PM) ratio in different monsoon

	ANNUAL	SW	INT.2	NE	INT.1	HAZE
Elements	5 Aug 2011–18 July 2012 n = 81	15 May–14 Sept n = 29	15 Sept–31 Oct n = 7	1 Nov-14 Mar $n = 35$	15 Mar -14 May n = 10	n = 11
PM _{2.5}	28 ± 17	38 ± 24	29 ± 12	21 ± 6	23 ± 8	61 ± 24
$(\mu g m^{-3})$	(6–118)	(14–118)	(10-50)	(6–35)	(14–39)	(40–118)
$PM_{2.5} / PM_{10}$	0.72 ± 0.18	0.72 ± 0.10	0.62 ± 0.17	0.71 ± 0.13	0.85 ± 0.40	0.74 ± 0.070
$PM_{2.5} / TSP$	0.46 ± 0.13	0.50 ± 0.081	0.44 ± 0.12	0.40 ± 0.087	0.54 ± 0.22	0.54 ± 0.069
PM_{10} / TSP	0.63 ± 0.12	0.70 ± 0.087	0.71 ± 0.058	0.57 ± 0.12	0.65 ± 0.087	0.73 ± 0.12

(SW, API; more than 50)

Source: Amil et al. (2016)

METEOROLOGICAL FACTORS AND CHEMICAL COMPOSITION

Air quality, meteorological parameters and PM2.5 composition (annual and different monsoon)

		ANNUAL	SW	INT.2
		5 Aug 2011 - 18 July 2012	15 May - 14 Sept	15 Sept - 30 Oct
Elements	Unit	n = 81	n = 29	n = 7
API	-	50 ± 16 (29 - 127)	60 ± 21 (36 - 127)	$49 \pm 6 (40 - 59)$
Г	°C	28.5 ± 1.19 (26.1 - 31.6)	$28.9 \pm 1.36 \ (26.4 - 31.6)$	28.5 ± 1.20 (27.1 - 30.4)
RH	%	$71.2 \pm 7.91 (50.4 - 86.7)$	68.2 ± 9.22 (50.4 - 86.7)	$72.9 \pm 8.50 (59.7 - 82.7)$
WS	ms ⁻¹	$1.29 \pm 0.194 \ (0.873 - 1.77)$	$1.39 \pm 0.187 \ (0.966 - 1.77)$	$1.25 \pm 0.198 \ (1.01 - 1.53)$
WD	Degree	$129 \pm 31.6 (23.1 - 208)$	$123 \pm 38.0 \ (23.1 - 205)$	$128 \pm 22.0 \ (100 - 167)$
Rainfall	mm	$10.4 \pm 17.5 \ (0.000 - 85.4)$	6.27 ± 10.6 (0.000 - 34.2)	8.46 ± 16.9 (0.000 - 45.4)
CO	ppm	1.29 ± 0.31 (0.61 - 2.16)	$1.26 \pm 0.32 \ (0.61 - 1.99)$	$1.43 \pm 0.32 (1.10 - 1.93)$
O ₃	ppm	$0.012 \pm 0.006 \ (0.000 - 0.029)$	$0.010 \pm 0.007 \ (0.000 - 0.025)$	$0.017 \pm 0.008 \ (0.010 - 0.029)$
SO ₂	ppm	$0.003 \pm 0.001 \ (0.001 - 0.008)$	$0.004 \pm 0.002 \ (0.001 - 0.008)$	$0.004 \pm 0.001 \ (0.002 - 0.005)$
NO _X	ppm	$0.062 \pm 0.013 \ (0.028 - 0.109)$	$0.057 \pm 0.012 \ (0.028 - 0.076)$	$0.072 \pm 0.013 \ (0.059 - 0.091)$
NO	ppm	$0.030 \pm 0.010 \ (0.008 - 0.067)$	$0.025 \pm 0.008 \ (0.008 - 0.041)$	$0.033 \pm 0.008 \ (0.025 - 0.047)$
NO ₂	ppm	$0.032 \pm 0.007 \ (0.016 - 0.049)$	$0.032 \pm 0.007 \ (0.016 - 0.048)$	$0.038 \pm 0.006 \ (0.034 - 0.049)$
SO ₄ ²⁻	μg m ⁻³	1.3 ± 0.88	1.8 ± 1.2	1.6 ± 0.78
ss-SO ₄ ²⁻	μg m ⁻³	0.076 ± 0.090	0.060 ± 0.023	0.022 ± 0.0079
nss-SO4 ²⁻	μg m ⁻³	1.3 ± 0.90	1.8 ± 1.2	1.61 ± 0.79
NO ₃ -	μg m ⁻³	0.21 ± 0.13	0.19 ± 0.077	0.29 ± 0.22
NH_4^+	μg m ⁻³	0.99 ± 0.85	1.5 ± 1.2	1.00 ± 0.64
SIA	μg m ⁻³	2.4 ± 1.7	3.3 ± 2.3	2.8 ± 1.6
SIA/PM _{2.5}	%	8.5 ± 3.0	8.7 ± 3.4	9.6 ± 3.0
NR	-	0.26	0.31	0.21
SO_4^2 -SO ₂	μg m ⁻³	1.3 - 8.2	1.8 - 9.5	1.6 - 10

Source: Amil et al.(2016)

Atmospheric Chemistry and Air Pollution Research Group

The National University

Malaysia

Air quality, meteorological parameters and PM2.5 composition (haze and different monsoon)

		NE	INT.1	HAZE
		1 Nov - 14 Mar	15 Mar - 14 May	:
Elements	Unit	n = 35	n = 10	n = 11
API	-	44 ± 8 (29 - 58)	45 ± 9 (33 - 58)	: 78 ± 22 (49 - 127)
Т	°C	28.1 ± 1.02 (26.1 - 30.4)	$28.8 \pm 0.78 \ (27.5 - 30.2)$	29.5 ± 1.33 (26.7 - 31.6)
RH	%	$73.6 \pm 6.79 \ (56.5 - 85.5)$	$70.5 \pm 4.01 \ (65.1 - 77.0)$	63.0 ± 9.91 (50.4 - 81.6)
WS	ms ⁻¹	$1.20 \pm 0.167 \ (0.873 - 1.46)$	$1.32 \pm 0.18 (1.08 - 1.71)$	$1.49 \pm 0.138 (1.27 - 1.70)$
WD	Degree	132 ± 31.2 (83.2- 208)	128 ± 25.1 (103 - 178)	$103 \pm 33.2 (23.1 - 137)$
Rainfall	mm	$15.1 \pm 22.7 \ (0.000 - 85.4)$	$7.04 \pm 9.69\;(0.000 - 24.0)$	2.28 ± 5.18 (0.000 - 15.8)
СО	ppm	$1.29 \pm 0.30 \ (0.92 - 2.16)$	$1.32 \pm 0.28 \ (0.84 - 1.75)$	$1.45 \pm 0.31 (0.89 - 1.99)$
O ₃	ppm	$0.013 \pm 0.005 \ (0.004 - 0.025)$	$0.014 \pm 0.004 \ (0.003 - 0.018)$	$0.016 \pm 0.004 \ (0.011 - 0.025)$
SO ₂	ppm	$0.003 \pm 0.001 \ (0.001 - 0.005)$	$0.003 \pm 0.001 \ (0.001 - 0.005)$	$\therefore 0.003 \pm 0.001 (0.001 - 0.005)$
NO _x	ppm	$0.065 \pm 0.014 \ (0.044 - 0.109)$	$0.059 \pm 0.011 \ (0.039 - 0.072)$	$0.057 \pm 0.013 (0.028 - 0.074)$
NO	ppm	$0.034 \pm 0.010 \ (0.021 - 0.067)$	$0.029 \pm 0.008 \ (0.013 - 0.039)$	$\therefore 0.022 \pm 0.008 (0.008 - 0.038)$
NO ₂	ppm	$0.031 \pm 0.006 \ (0.021 - 0.049)$	$0.030 \pm 0.008 \ (0.018 - 0.044)$	$0.035 \pm 0.008 \ (0.020 - 0.048)$
SO4 ²⁻	µg m⁻³	0.98 ± 0.41	1.1 ± 0.70	2.4 ± 1.2
ss-SO ₄ ²⁻	µg m ⁻³	0.048 ± 0.029	0.16 ± 0.15	0.059 ± 0.00
nss-SO ₄ ²⁻	µg m ⁻³	0.95 ± 0.42	0.90 ± 0.60	2.4 ± 1.2
NO ₃ -	μg m ⁻³	0.19 ± 0.13	0.27 ± 0.13	0.22 ± 0.14
NH_4^+	μg m ⁻³	0.65 ± 0.34	0.82 ± 0.49	: 2.2 ± 1.5
SIA	μg m ⁻³	1.7 ± 0.81	2.0 ± 0.88	4.7 ± 2.6
SIA/PM _{2.5}	%	8.2 ± 2.8	8.4 ± 2.3	: 7.5 ± 2.7
NR	-	0.22	0.17	0.35
SO_4^2 - SO_2	μg m ⁻³	0.98 - 6.6	1.1 - 8.0	2.4 - 9.1

Universiti Kebangsaan

MALAYSIA

The National University

Source: Amil et al.(2016)

Composition – PM_{2.5} and Major Ions

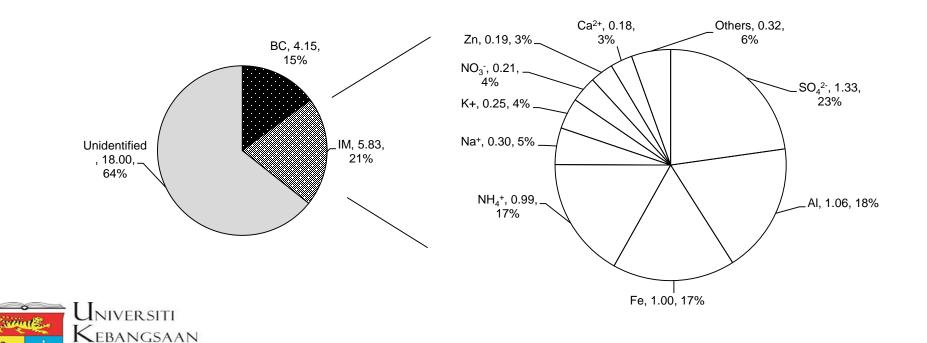
Elements	Unit	ANNUAL	HAZE
PM _{2.5}	$\mu g/m^3$	28 ± 17	61 ± 24
F-	$\mu g/m^3$	ud	0.01 ± 0.01
Cl	$\mu g/m^3$	0.03 ± 0.03	0.03 ± 0.02
Br⁻	$\mu g/m^3$	0.02 ± 0.01	n.d.
NO ₃ ⁻	$\mu g/m^3$	0.21 ± 0.13	0.22 ± 0.14
PO4 ³⁻	$\mu g/m^3$	0.08 ± 0.06	n.d.
SO ₄ ²⁻	$\mu g/m^3$	1.33 ± 0.88	2.4 ± 1.24
Na ⁺	$\mu g/m^3$	0.3 ± 0.36	0.23 ± 0
$\mathrm{NH_4}^+$	$\mu g/m^3$	0.99 ± 0.85	2.21 ± 1.47
\mathbf{K}^+	μg/m ³	0.25 ± 0.14	0.51 ± 0.17
Ca ²⁺	μg/m ³	0.18 ± 0.1	0.28 ± 0.21
Mg^{2+}	$\mu g/m^3$	0.03 ± 0.04	0.05 ± 0.03

Kebangsaan

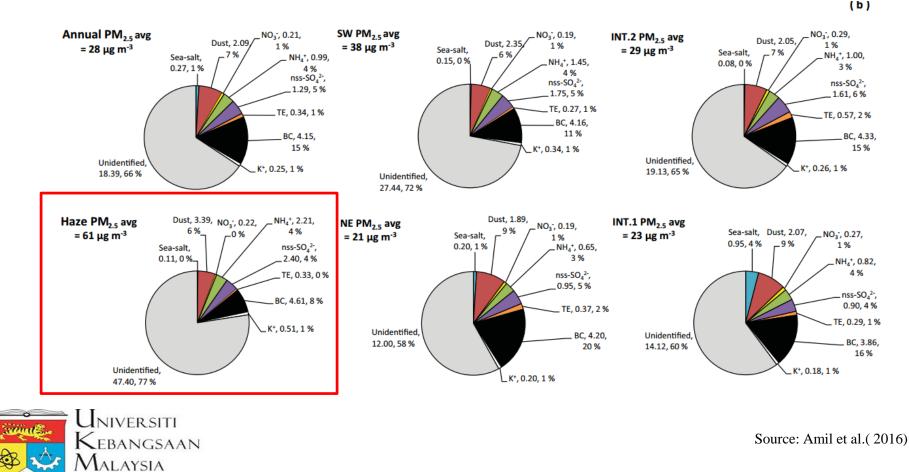
The National University

Trace Element – Black Carbon

Elements	Unit	ANNUAL	HAZE
Al	μg/m ³	1.06 ± 1.23	2.79 ± 2.56
Ba	$\mu g/m^3$	0.04 ± 0.02	0.05 ± 0.03
Fe	$\mu g/m^3$	1 ± 0.71	1.9 ± 1.5
Pb	$\mu g/m^3$	0.11 ± 0.12	0.09 ± 0.03
Zn	$\mu g/m^3$	0.19 ± 0.1	0.17 ± 0.09
Ag	ng/m ³	0.14 ± 0.1	n.d.
As	ng/m ³	0.38 ± 0.15	0.34 ± 0.06
Cd	ng/m ³	0.13 ± 0.14	0.13 ± 0.05
Cr	ng/m ³	3.94 ± 6.36	2.87 ± 1.91
Be	ng/m ³	ud	1.46 ± 0.75
Со	ng/m ³	0.02 ± 0.01	0.03 ± 0.03
Cu	ng/m ³	2.74 ± 1.89	3.49 ± 1.96
Mn	ng/m ³	0.93 ± 0.64	1.39 ± 1.06
Ni	ng/m ³	0.48 ± 0.47	0.59 ± 0.5
Rb	ng/m ³	1.01 ± 0.5	1.78 ± 0.61
Se	ng/m ³	0.11 ± 0.07	0.21 ± 0.09
Sr	ng/m ³	0.27 ± 0.22	0.46 ± 0.39
U	ng/m ³	ud	3.82 ± 2.83
V	ng/m ³	0.92 ± 0.56	1.02 ± 0.57
BC	$\mu g/m^3$	4.15 ± 0.64	4.61 ± 0.33


Overall Inorganic Composition

- Anions + cations + TE + BC = 36% of PM_{2.5} mass
- $CMC = BC > SIA > Dust > TE > Sea salt > K^+$


Malaysia

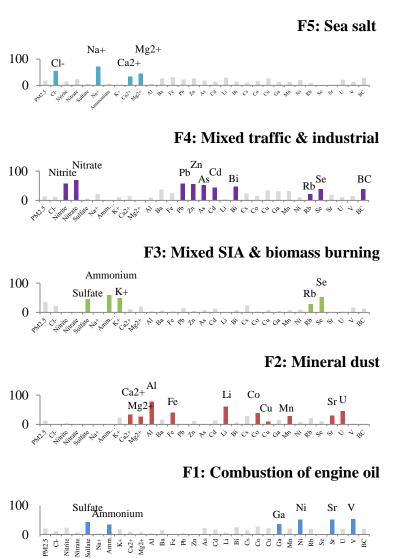
The National University

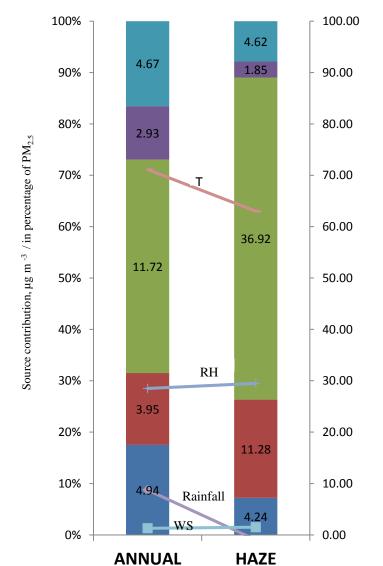
- EF = anthropogenic sources (Pb, Se, Zn, Cd, As, Bi, Ba, Cu, Rb, V and Ni) and crustal sources (Sr, Mn, Co, and Li)
- Both primary & secondary pollutants of PM_{2.5} equally important, albeit seasonal variability

Chemical Mass Closure (CMC)

The National University

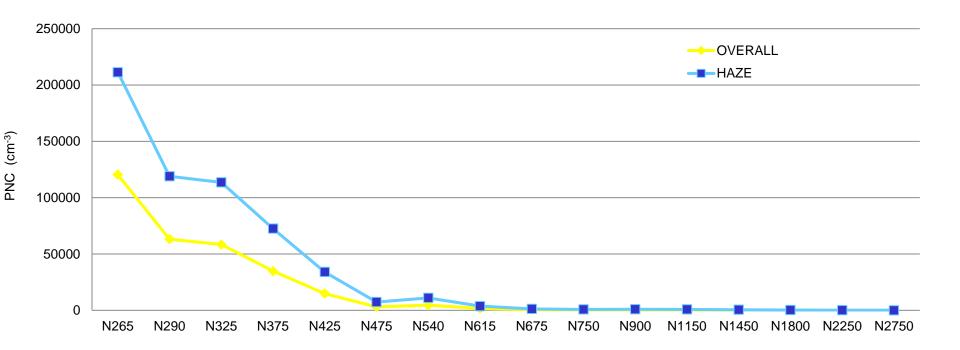
of Malaysia

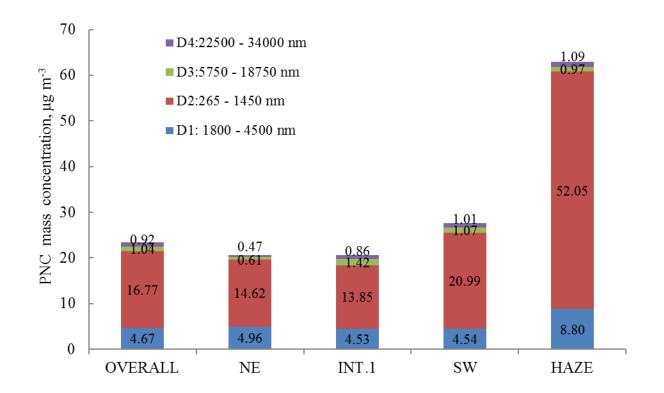

Source Apportionment



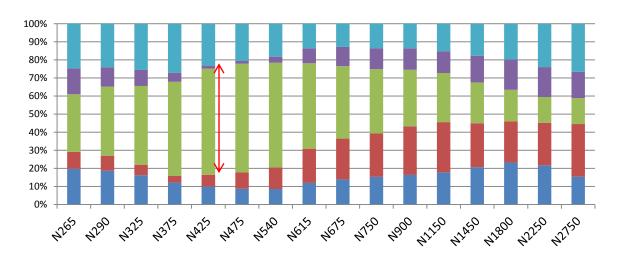
Source contribution, μg m ⁻³ (%)	ANNUAL	SW	INT.2	NE	INT.1	HAZE
Factor 1: Combustion of	4.94	6.47	7.08	3.50	3.98	4.24
engine oil	(17%)	(17%)	(24%)	(16%)	(16%)	(7%)
Factor 2: Minauel dust	3.95	5.49	4.58	3.18	1.62	11.28
Factor 2: Mineral dust	(14%)	(15%)	(16%)	(15%)	(7%)	(19%)
Factor 3: Mixed SIA and	11.72	19.05	9.99	7.44	6.21	36.92
biomass burning	(42%)	(51%)	(35%)	(34%)	(26%)	(63%)
Factor 4: Mixed traffic	2.93	1.30	5.42	4.28	1.29	1.85
and industrial	(10%)	(4%)	(19%)	(20%)	(6%)	(3%)
	4.67	4.98	1.80	3.20	10.76	4.62
Factor 5: Sea salt	(17%)	(13%)	(6%)	(15%)	(45%)	(8%)

T (°C) / RH (%) / Rainfall (mm) / WS (ms⁻¹)

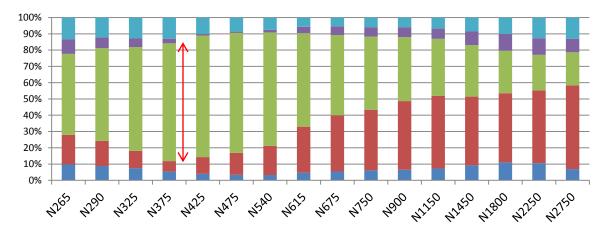

PMF-MLR SOURCE APPORTIONMENT: PM2.5 CHEMICAL COMPOSITION (INORGANIC & BC)



<u>PARTICLE NUMBER DISTRIBUTION (PNC)</u>: 265 – 2750 nm (0.265 – 2.75 μm)



<u>PARTICLE NUMBER DISTRIBUTION (PNC)</u>: 265 – 2750 nm (0.265 – 2.75 μm)

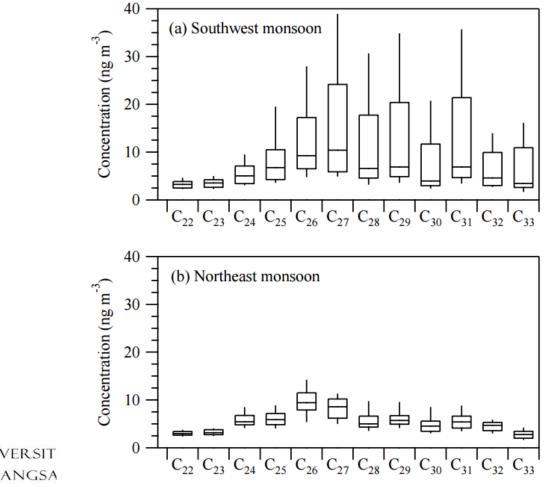


PMF- MLR SOURCE APPORTIONMENT: PNC (265 – 2750 nm) - PM_{2.5} SOURCES

OVERALL (JAN – JULY 2012)

■ F1: Combustion of engine oil ■ F2: Mineral dust ■ F3: Mixed SIA & biomass burning ■ F4: Mixed traffic & industrial ■ F5: Sea salt

Atmospheric Chemistry and Air Pollution Research Group


HAZE 2012

ORGANIC COMPOSITION

	Southwestern monsoon (June–September)		Post-mo (October-N			Northeastern monsoon (December-March)		Pre-monsoon (April–May)	
Compounds	$Av \pm SD$	Range	$Av \pm SD$	Range	$Av \pm SD$	Range	$Av \pm SD$	Range	
OC and EC ($\mu g m^{-3}$)			1						
OC	10 ± 7.8	3.6-36	5.6 ± 2.4	2.5-11	5.2 ± 1.4	2.7-8.2	4.2 ± 1.4	2.8-7.3	
EC	3.0 ± 0.95	1.0-5.6	3.2 ± 1.3	1.1-5.9	3.4 ± 1.1	1.6-6.1	2.6 ± 1.2	1.4-4.5	
Biomarkers (ng m ⁻³)									
Levoglucosan	160 ± 130	32-490	64 ± 39	19-130	40 ± 14	17–64	49 ± 21	23-86	
Mannosan	8.4 ± 8.2	1.5-30	3.4 ± 2.6	0.95-9.1	2.6 ± 1.2	0.84-5.3	2.5 ± 1.2	1.2-5.3	
Galactosan	2.3 ± 2.3	0.38-8.3	0.86 ± 0.72	0.29-2.8	0.60 ± 0.35	0.13-1.3	0.62 ± 0.34	0.33-1.5	
p-Hydroxybenzoic acid	1.9 ± 1.9	0 <u>.1</u> 8 <u>-7</u> .5	0.79 ± 0.67	0.036-2.2	0.64 ± 0.30	0.20-1.2	0.50 ± 0.25	0.24-1.0	
Vanillin	1.6 ± 1.1	0.54-5.5	1.2 ± 0.66	0.45-2.2	1.0 ± 0.38	0.21-1.7	0.96 ± 0.42	0.30-1.7	
Syringaldehyde	0.29 ± 0.22	0.085-1.0	0.59 ± 0.22	0.26-1.2	0.77 ± 0.54	0.074-2.2	0.36 ± 0.22	0.093-0.77	
Vanillic acid	0.39 ± 0.39	0.074-1.9	0.11 ± 0.070	0.031-0.22	0.073 ± 0.057	0.013-0.26	0.066 ± 0.027	0.034-0.12	
Syringic acid	0.35 ± 0.41	0.075-2.4	0.26 ± 0.21	0.058-0.59	0.17 ± 0.13	0.029-0.64	0.16 ± 0.084	0.049-0.28	
Dehydroabietic acid	1.7 ± 1.1	0.10-5.4	1.1 ± 0.69	0.31-2.4	1.1 ± 1.1	0.14-4.6	0.67 ± 0.24	0.16-0.98	
Cholesterol	1.8 ± 0.82	0.50-3.7	1.2 ± 0.51	0.57-2.0	0.98 ± 0.51	0.026-2.0	1.3 ± 0.56	0.51-2.0	
<i>n</i> -Alkanes (ng m ^{-3})									
Docosane	3.2 ± 0.82	1.8-5.0	2.9 ± 0.61	2.0-4.0	3.0 ± 0.53	1.9-4.2	4.0 ± 4.8	2.1-19	
Tricosane	3.6 ± 1.2	2.0-7.2	3.2 ± 0.91	2.0-4.8	3.2 ± 0.65	1.8-4.4	5.0 ± 7.6	2.1-29	
Tetracosane	5.8 ± 3.2	2.5-19	5.7 ± 1.7	3.3-8.7	6.1 ± 2.3	2.9-15	6.3 ± 8.5	2.7-33	
Pentacosane	8.9 ± 6.7	3.5-34	5.7 ± 2.3	3.1-11	6.0 ± 1.6	3.7-9.2	5.8 ± 5.5	3.2-23	
Hexacosane	13 ± 9.8	4.3-49	8.6 ± 3.7	3.6-18	9.7 ± 2.8	5.0-16	7.1 ± 5.3	3.5-23	
Heptacosane	16 ± 14	4.7–64	7.2 ± 2.6	3.6-12	8.2 ± 2.4	3.7-14	5.8 ± 3.4	3.3-16	
Octacosane	12 ± 12	2.6-54	4.3 ± 1.8	1.7-7.9	5.9 ± 3.0	2.3-17	3.6 ± 1.7	2.3-8.2	
Nonacosane	13 ± 13	3.0-55	4.9 ± 2.1	1.5-8.7	6.3 ± 2.2	3.3-13	4.5 ± 1.4	2.6-7.8	
Triacontane	7.9 ± 7.8	2.0-36	3.8 ± 2.0	1.6-9.0	5.2 ± 2.7	2.0-16	3.3 ± 1.7	1.7-8.3	
Hentriacontane	14 ± 14	2.8-59	4.8 ± 1.9	1.8-8.4	5.7 ± 2.0	3.3-11	4.3 ± 1.2	2.9-6.9	
Dotriacontane	6.7 ± 5.5	1.6–27	3.4 ± 0.72	2.4-4.5	4.6 ± 1.3	2.8-7.8	3.1 ± 0.88	1.8-4.4	
Tritriacontane	68 ± 71	1.2-33	2.5 ± 0.97	1.1-4.2	2.8 ± 0.92	1.2-5.0	2.1 ± 0.72	1.5-3.8	

Source Apportionment using Organic Substances

- Varimax-rotated PCA was used to identify the possible carbonaceous $PM_{2.5}$ sources at PJ.
- Two data sets were considered: (i) PJ_A data, which includes 25 variables (all quantified compounds) and 81 samples (all samples),
- and (ii) PJ_S data, which includes 25 variables and 65 samples (excluded are the samples acquired in September 2011 and June 2012, which are influenced by Indonesian peatland fires (IPFs).

Source Apportionment

Factor A1, which explains 60% of the variance, is heavily loaded (loading factor: > 0.65) with OC, LG, MN, galactosan, p-hydroxybenzoic acid, VA and C25–C33, which direct towards an IPF source.

Factor A2, which corresponds to 12% of the variance, is heavily loaded with C22–C24, suggesting a petrogenic source (Abas et al., 2004a; Gogou et al., 1996; He et al., 2010).

Factor A3, which explains 8.0% of the variance in the data set, is heavily loaded with SA and dehydroabietic acid, indicating mixed (softwood and hardwood) biomass burning sources.

(a)	A1	A2	A3	
OC	0.97	0.10	0.16	
EC	0.29	0.37	0.51	
Levoglucosan	0.81	-0.05	0.17	
Mannosan	0.89	0.00	0.11	
Galactosan	0.90	0.02	0.08	
p-Hydroxybenzoic acid	0.94	0.04	0.22	
Vanillin	0.61	0.15	0.25	
Syringaldehyde	-0.17	0.12	0.40	
Vanillic acid	0.65	-0.10	0.55	
Syringic acid	0.28	-0.11	0.81	
Dehydroabietic acid	0.15	-0.01	0.86	
Cholesterol	0.36	0.14	0.39	
C ₂₂	0.03	0.95	0.05	
C ₂₃	0.07	0.95	0.05	
C ₂₄	0.30	0.92	0.06	
C ₂₅	0.81	0.54	0.14	
C ₂₆	0.86	0.43	0.13	
C ₂₇	0.95	0.23	0.13	
C ₂₈	0.96	0.18	0.07	
C ₂₉	0.97	0.13	0.12	
C ₃₀	0.92	0.25	0.05	
C ₃₁	0.97	0.10	0.13	
C ₃₂	0.93	0.15	0.11	
C ₃₃	0.97	0.10	0.13	
% variance	60	12	8.0	
% cumulative	60	72	80	

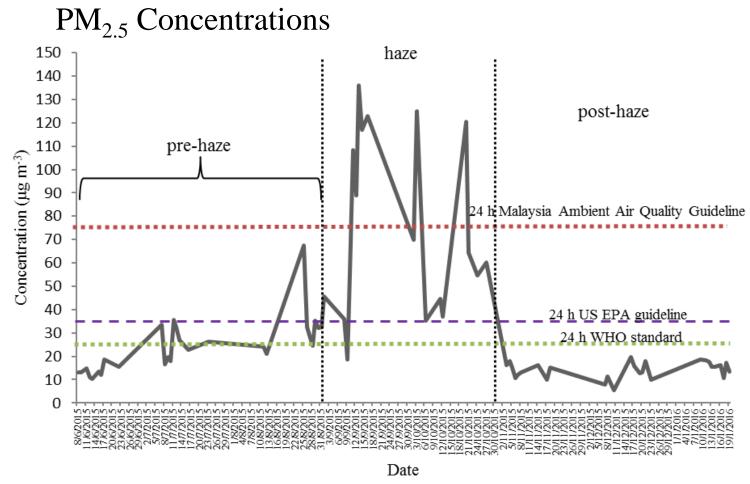
Source A	pportionment
----------	--------------

(b)	S1	S 2	\$3	S4	S 5
OC	0.47	0.47	0.10	0.08	0.57
EC	0.39	0.20	0.25	0.26	0.65
Levoglucosan	0.09	0.71	-0.03	-0.52	0.19
Mannosan	0.19	0.84	0.02	-0.26	0.28
Galactosan	0.17	0.83	0.06	-0.09	0.41
p-Hydroxybenzoic acid	0.26	0.62	0.08	0.23	0.42
Vanillin	0.22	0.32	0.07	0.05	0.61
Syringaldehyde	0.24	0.13	0.01	0.74	0.07
Vanillic acid	-0.12	0.81	-0.04	0.22	-0.01
Syringic acid	0.02	0.81	0.00	0.37	0.26
Dehydroabietic acid	0.18	0.44	0.04	0.12	0.60
Cholesterol	0.01	0.17	0.15	-0.21	0.77
C ₂₂	0.05	-0.02	0.97	-0.04	0.05
C ₂₃	0.05	0.00	0.97	-0.04	0.04
C ₂₄	0.28	-0.03	0.94	0.04	-0.01
C ₂₅	0.33	0.10	0.85	0.05	0.35
C ₂₆	0.61	0.05	0.68	0.14	0.24
C ₂₇	0.67	0.08	0.53	0.10	0.35
C ₂₈	0.86	0.06	0.27	-0.01	0.01
C ₂₉	0.89	0.14	0.18	0.08	0.29
C ₃₀	0.84	0.03	0.33	0.04	-0.12
C ₃₁	0.77	0.24	0.07	0.10	0.47
C ₃₂	0.88	-0.04	0.02	0.10	0.16
C33	0.72	0.28	-0.03	0.14	0.49
% variance	43	19	11	5.0	4.5
% cumulative	43	62	72	77	82

Factor S1 explains 43% of the data's variance and is heavily loaded with C27–C33, which suggests tire wear emission.

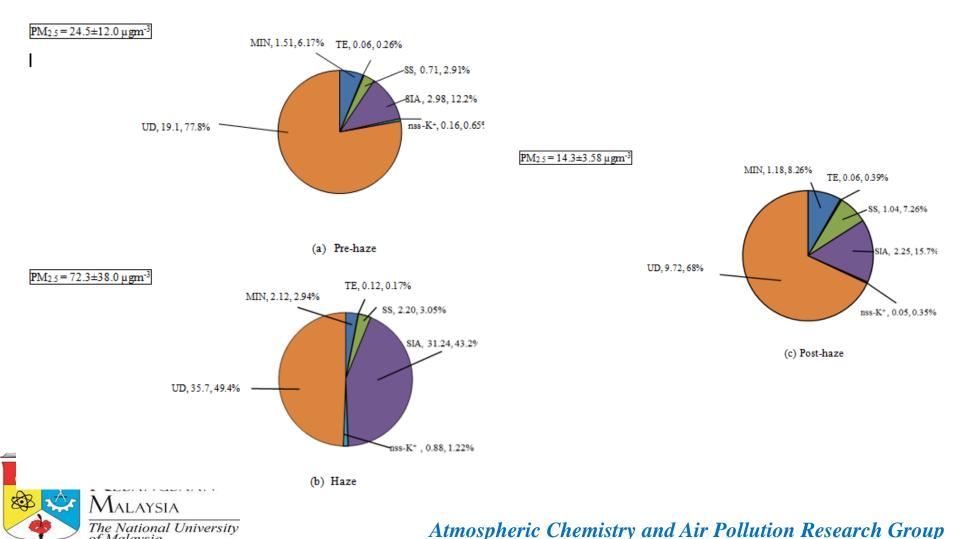
Factor S2 explains 19% of the variance and is heavily loaded with LG, MN, galactosan, VA and SA, which correspond to a biomass burning source.

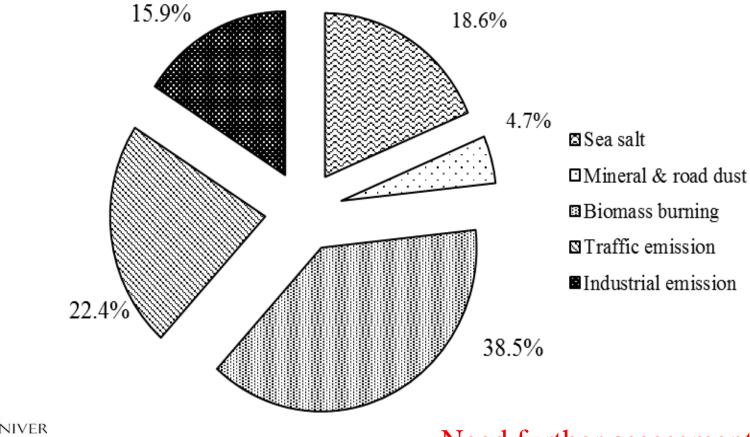
Factor S3, which explains 11% of the variance, is heavily loaded with C22–C26, which indicate petrogenic source.


Although heavy loading with only syringaldehyde is found in factor S4 (5.0% of the variance), its source could not be identified.

Factor S5 explains 4.5% of the variance and is heavily loaded with EC and cholesterol, which are produced when cooking meat.

RECENT STUDY PM_{2.5} in Kuala Lumpur City Centre (2015)


Inorganic Composition of $PM_{2.5}$ (2015)


Ionic species

Chemical Mass Closure of PM_{2.5} (2015)

Source Apportionment of $PM_{2.5}$ (2015)

Need further assessment...

Conclusion

- PM_{2.5} concentration in Kuala Lumpur urban environment exceed the limit of WHO, USEPA and Malaysia Air Quality Standard during haze episode.
- Several ionic compositions (e.g. SO₄²⁻, NH₄⁺, K⁺, Ca²⁺) and trace metals (AI, Fe, U, Be) are significantly higher during haze episode
- Five major sources were determined as main contributor of PM_{2.5} based on inorganic composition.
- Biomarmaker such as Levoglucosan is a good indicator of biomass burning. Long-changed alkanes (C₂₅-C₃₁) dominate the organic molecules in PM_{2.5} during biomass burning.

Conclusion

- PNC dominates by fine and ultrafine particles
- Biomass burning, petrogenic emission, tire wear emission and cooking meat are major sources of organic composition in PM_{2.5}.
- Next: Health risk impact assessment

Further Reading

- Fujii, Y., Tohno, S., Amil, N., Latif, M. T., Oda, M., Matsumoto, J., and Mizohata, A. (2015b). Annual variations of carbonaceous PM2.5 in Malaysia: influence by Indonesian peatland fires. Atmos. Chem. Phys. 15, 13319-13329.
- Amil, N., Latif, M. T., Khan, M. F., and Mohamad, M. (2016). Seasonal variability of PM2.5 composition and sources in the Klang Valley urban-industrial environment. Atmos. Chem. Phys. 16, 5357-5381.
- Khan, M. F., Latif, M. T., Saw, W. H., Amil, N., Nadzir, M. S. M., Sahani, M., Tahir, N. M., and Chung, J. X.: Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment, Atmos. Chem. Phys., 16, 597-617,

ACKNOWLEDGEMENT

- Malaysian Ministry of Education for Research Grant FRGS/1/2013/STWN01/UKM/02/2
- Malaysian Meteorology Department sampling of PM2.5 for 1 year/Meteorological data
- Malaysian Department of Environment Air pollution data.

