Biomass-burning

Aerosols &

Stratocumulus

Environment:

Lifecycles &

Interactions

xperimentSatellite-surface2013-2015and aerosol-cloue

An overvier NASA: <u>S.-C. Tsay</u>, N. C. H Taiwan: led by N.-H. George Thailand: led by S. Janjai (SU) Vietnam: led by Anh X. Nguye

Global frequency distribution of Smoke in the presence of Clouds*

- West coast of California: Ship tracks, a small-scale aerosol-cloud interaction
- South America: Convective "fumulus" clouds, diurnal cycle plays important role
- Southern Africa: Distinct, decoupled aerosol-cloud layers over west coast
- Southeast Asia: Upwind smoke and downwind coupled-aerosol-cloud system *Tsay, Hsu, Lau, et al., 2013, Atmos. Environ., 78, 20-34.

ATMOSPHERIC

ENVIRONMENT

October 2013

ISSN 1352-2310

ATMOSPHERIC ENVIRONMENT

Special Issue:Observation, modeling and impact studies of biomass burning and pollution in the SE Asian Environment

7-SEAS/2010 Dongsha Experiment

Delegates of 7-SEAS participating countries visited the Dongsha supersite on 18 June 2010.

7-SEAS (2013) special issue, Atmospheric Environment (28/37>75%)
7-SEAS (2017) special issue, Aerosol & Air Quality Res. (27/46>58%)

L1/EPIC 7-SEAS/BASELInE: a baseline Strategy* GEO/AHI, ABI... **CloudSat CALIPSO** Aqua : MPLNET Terra 👔 : AERONET **T**: Radiometer : Chemistry "river of smoke aerosols": Mobile Labs E

September 21, 2016 NASA/GSFC

• Small Operations (2-3 operators/scientists), yet Cost-Effective: over 10 countries on 3 continents for aerosol-cloud-radiation studies

- Achievements: >80 SMARTLabs publications since 2000 & many in process for the spring 2010-2015 7-SEAS deployments
- Future Missions: Cal/Val for S-NPP, GPM, ..., and EV deployments

SMART: Surface-sensing Measurements for Atmospheric Radiative Transfer (in mini-Network mode) **R**adiative Transfer (in mini-Network mode)

Pyranometer

Pressure Senso

- Better understanding of excess solar absorption
- Spectral Derivatives: partitioning subvisual cirrus & aerosols
- Lagrange-/DRAGON-like network deployment with AERONET -
- e-Pandora Spectrometer (280-800 nm)

Products:

- $\cdot O_3, NO_2$
- Cirrus (τ)
- Aerosols (τ)
- TDE-corrected solar irradiance
- Terrestrial irradiance

- **Applying Ideal Gas Law:**
- Ji and Tsay, 2010: A novel non-intrusive method to resolve the thermal-domeeffect of pyranometers: Instrumentation and observational basis, JGR., 115, D00K21.
- Ji, Tsay, et al., 2011: ----- Radiometric calibration and implication, JGR., 116, D24105.
 - Tsay, et al., 2016: ----- From the lab to field measurements, to be submitted.

• Hansell, Tsay, et al., 2014, Spectral derivative analysis of solar spectroradiometric measurements: Theoretical basis, JGR, 119, 8908-8924.

COMMIT: Chemical, Optical & Microphysical Measurements of In-situ Troposphere

Aerosol (& Precursor)

*Hygroscopicity/Growth Factor**,^ ✓ Optical: Neph (Wet/Dry)

CCN

- ✓ Microphysical: SMPS (Wet/Dry)
- $\checkmark \quad \text{Activation } (\kappa): f(\text{Size, Comp, SS})$

Host >25 instruments

- Trace gas (CO, CO₂, SO₂, NO_x/NO_y, and O₃) concentrations;
- PM₁, PM_{2.5}, PM₁₀ mass concentration;
- 3λ-light (RGB) extinction; 3λ- & 7λ-light absorption;
 - 3λ-light scattering, in series operation for dry/wet conditions;
- Ambient size distribution (TSI/FMPS and TSI/APS);
- Wet/dry size distribution, in parallel operation (TSI/SMPS);
- Aerosol activation (DMT/CCN counter).

*Hsiao, Tsay, et al., 2016, Aero. Air Qual. Res., doi:10.4209/aaqr.2015.07.0447. ^Pantina, Tsay, et al., 2016, Aero. Air Qual. Res., doi:10.4209/aaqr.2015.011.0630.

ACHIEVE: Aerosol-Cloud-Humidity Interaction Exploring & Validating Enterprise **Exploring & Validating Enterprise**

- **Products:** · Cloud Optics/Radiation: zenith downwelling radiance (UV-µwave), linear depolarization, reflectivity profile
 - Cloud Microphysics: thermodynamic phase, water content, cloud-base/top/height, cloud fraction, Doppler fallvelocity, ice/liquid particle size (non-precipitation)

7-SEAS/BASELInE Data Products

SMARTLabs/AERONET/MPLNET	Regional Instrumentation*
<i>Trace Gas – Column</i> : O ₃ , NO ₂ , SO ₂ , HCHO, CO, H ₂ O; <i>– Surface</i> : CO, CO ₂ , O ₃ , SO ₂ , NO, NOx/NOy; <i>– Profile</i> : NO ₂ , (O ₃ in progress)	Organic Carbon (OC): OC_1 (120°C), OC_2 (280°C), OC_3 (480°C), OC_4 (580°C), OP (pyrolyzed organic carbon, e.g., anhydrosugars, dicarboxylic acids)
<i>Aerosol Optical Thickness</i> : multi-spectral from UV to shortwave-IR, dust at longwave-IR, and extinction profile	<i>Elemental Carbon</i> (EC): EC ₁ (580°C – OP), EC ₂ (740°C), EC ₃ (840°C)
Aerosol Microphysics/Chemistry: size, mass, type, CCN, hygroscopicity, scattering/absorption/extinction	<i>Water soluble ions</i> : Na ⁺ , NH ₄ ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺ , Cl ⁻ , NO ₃ ⁻ , SO ₄ ²⁻ , nss-SO ₄ ²⁻ , NO ²⁻ , F ⁻
<i>Cloud Optical Thickness</i> : multi-spectral from visible to longwave-IR	Toxic: Mercury, PCDD/Fs (dioxin)
<i>Cloud Microphysics</i> : size, liquid-/ice-water content, cloud-base/top/height, thermodynamic phase, Doppler fall-velocity, depolarization and reflectivity profiles	<i>Metal</i> : Ti, Mn, Co, Ni, Cu, Zn, Mo, Ag, Cd, Sn, Sb, Tl, Pb, V, Cr, As, Y, Se, Zr, Nb, Ge, Rb, Cs, Ga, La, Ce, Pr, Nd, Sm, Eu, Gd
Radiation Flux: surface solar and terrestrial irradiance	UV radiation: spectral UV (erythemal) irradiance
<i>Meteorology</i> : P, T, RH, wind, mixed-layer height, precipitation, visibility	Supplementary data: sounding profile, sky image, particle spectroscopy/morphology, rainfall amount
http://smartlabs.gsfc.nasa.gov	<u>*nhlin@cc.ncu.edu.tw</u>

- As CCN increases, cloud droplet sizes decrease, number concentrations increase, cloud water content and integrated LWP increase; drizzle suppressed.
- Simulated reflectivity decreases with increasing CCN owing to more numerous smaller droplets and suppressed drizzle development.

- RAMS bulk aerosol module: aerosol hygroscopicity as function of species-dependent soluble fraction parameter (*\varepsilon*), analogous to the *\varepsilon*-parameter
- 3M-bulk microphysics scheme: hydrometeor size distribution as function of mass mixing ratio (q), total number concentration (N_t), and distribution spectral width parameter (ν)

Drone Measurements: Atmospheric (& Aerosol) Profiling

	Specifications
Max. Payload	4 kg
Max. altitude	1200 m
Measured parameters	Pressure, Temperature, RH, Radiation flux, PM conc.

Aerosol Counting Composition Extinction and Sizing System ACCESS (BRECHTEL 9400)

ACCESS includes:

- Mixing-based Condensation Particle Counter
- 3-wavelength absorption photometer
- 8-channel automated filter sampler
- Optical Particle Counter
- Total power at 12 VDC: 60 watts
- System size: 10(L) x 8(W) x 6(H) inches
- System weight: 9.5 lbs (without battery)

Brief Summary

-A synergy of satellite, aircraft, and ground-based network (snapshots at spectral, spatial, temporal, and angular dimensions) measurem nts, together with physics-based modeling (process continuity) will greatly advance our ding of e layers of aerosol interactions bety server and cloud radial on recipitation. —Interch cipinary and international collaborations

-Interal cipenary and international collaborations are essential for quantifying fresh water redistribution, one of the greatest problems in the 21st century (e.g., NASA strategic plan, 2012).